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ABSTRACT: Directed self-assembly of block copolymers on chemical
patterns is of considerable interest for sublithographic patterning. The concept
of pattern interpolation, in which a subset of features patterned on a substrate is
multiplied through the inherent morphology of an ordered block copolymer,
has enabled fabrication of extremely small, defect-free features over large areas.
One of the central challenges in design of pattern interpolation strategies is that
of identifying system characteristics leading to ideal, defect-free directed
assembly. In this work we demonstrate how a coarse-grained many-body model
of block copolymers, coupled to an evolutionary computation (EC) strategy,
can be used to design and optimize substrate−copolymer combinations for use
in lithographic patterning. The proposed approach is shown to be significantly
more effective than traditional algorithms based on random searches, and its
results are validated in the context of recent experimental observations. The
coupled simulation−evolution method introduced here provides a general and efficient method for potential design of complex
device-oriented structures.

Block polymers exhibit a variety of ordered morphologies
that are compatible with common geometrical features

encountered in semiconductor devices, which are reaching
dimensions on the order of tens of nanometers. At such length
scales, directed self-assembly (DSA) of block polymers on
chemical1−3 or topographic patterns4−6 provides a viable
strategy for lithographic patterning.
In DSA on chemical patterns, which are the primary concern

of this Letter, desirable features are created on a substrate
through a combination of various traditional lithographic
approaches; such features are then used to guide or direct
the assembly of thin films of block polymers. Figure 1 shows a
schematic representation of the underlying process for

preparation of a lamellar morphology on a stripe-patterned
substrate. Ideally, one of the stripes should interact
preferentially with one of the blocks, and the other stripe
should interact with the other block. To have ordered lamellae
oriented perpendicular to the substrate, the interaction of both
blocks with the air interface should be comparable. The figure
corresponds to three-to-one (or 3X) patterning, where one
feature on the surface corresponds to three features of the block
copolymer morphology.
A particularly important concept in block copolymer DSA is

that of pattern interpolation or density multiplication.7−9 In
that approach, only a subset number of features is created on
the surface, and the block copolymer is used to fill in the gaps,
thereby adding information into the overall assembly process.
In that limit, the polymer can be viewed as a “smart” material
that, with some guidance, can add features where they are
needed. In the context of Figure 1, pattern interpolation would
be achieved by using only half, one-third, or one-fourth of the
substrate lines shown in the diagram. Furthermore, to facilitate
fabrication, the features on the substrate could be larger than
the characteristic dimensions of the block copolymer
morphology (e.g., the lamellar period).9
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Figure 1. Schematic representation of mX density multiplication of
block copolymers on chemical patterns. (a) Preferential stripes of
width (W) are printed at pitch mL0. (b) Increase in resolution due to
block copolymer self-assembly with respect to the patterned substrate.
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In this Letter, we focus on the creation of periodic lines,
which currently represent one of the most promising
geometrical features for insertion into patterning processes
for commercial production of next-generation semiconductor
devices and high-density storage media.10 Figure 1(a) provides
a schematic representation of the key design variables in pattern
interpolation. They include the width W of the stripes, the
characteristic period of the material (L0), and the interaction of
the blocks with the stripe and background regions of the
substrate. These parameters are commonly determined by trial
and error, where experiments with various combinations of the
design variables are carried out until a suitable combination is
identified. This approach becomes challenging and expensive as
the number of variables increases. Recently, we proposed a
covariance matrix adaptation evolution strategy (CMA-ES)
which, when combined with a simple two-dimensional
Ginzburg−Landau free energy and a Cahn−Hilliard approach,
enabled design of substrates capable of guiding polymer
assembly into desirable, nontrivial morphologies.11 Importantly,
this evolutionary strategy was shown to lead to much faster
convergence than a simple random search approach.12,13

In this work, we address the question of whether an
evolutionary strategy can in fact be used in combination with
more realistic but also much more computationally demanding
three-dimensional simulations of many-particle systems, where
thermal fluctuations and molecular interactions are included, to
design polymeric material systems with a target structure or
functionality. We focus on the particular case of linear triblock
BAB block copolymers (A and B label the monomer types)
which, as shown in recent work, offer a promising alternative
for fabrication of ultrasmall features relevant for applica-
tions14,15 and are more tolerant to domain−pattern mis-
match.15 We examine their assembly into lamellae on stripe-
patterned substrates. Our results indicate that the actual values
of interactions between the polymer and the substrate depend
on the degree of pattern interpolation and serve to demonstrate
that the approach proposed here is much more efficient in
finding such values than conventional algorithms based on
random sampling of phase space (e.g., inverse Monte Carlo
methods).
The description adopted here is based on the standard model

of block copolymers, which has been used extensively to
investigate the morphology of polymeric materials.16 Past work
has shown that such a model is able to reproduce the structure
and thermodynamic properties of ordered block copolymer
films on patterned substrates in quantitative agreement with
experimental observations.9,17,18 For brevity, only a brief
account is given here. Readers are referred to the literature
for additional details.19 We consider systems of n BAB triblock
copolymers, discretized into N beads connected by harmonic
springs. The volume and temperature of the system are fixed at
V and T, respectively. The total energy (H) of the system
includes bonded, nonbonded, and substrate contributions. The
polymer chains are assumed to be Gaussian; the bonded energy
(Hb) is given by βHb = (3/2)Σj=1

np Σi=1
N−1(rj(i +1) − rj(i))

2/b2,
where b is the statistical segment length, rj(i) the position of the
ith segment of the jth chain, and β−1 = kBT, where kB is
Boltzmann’s constant.
The nonbonded energy is given by βHnb = √N̅∫ V(dr

3/
Re
3)[χNϕAϕB + (κN/2)(1 − ϕA − ϕB)

2], where ϕA and ϕB
denote the local densities of beads A and B, respectively; Re

2 =
Nb2 is the mean square end-to-end distance; and√N̅ = ρ0Re

3/N
is the invariant degree of polymerization, where ρ0 is the

average bead density. The first term in the volume integral
describes the repulsion between unlike monomers and is
characterized by the Flory−Huggins parameter (χ). The second
term represents the finite compressibility of the material,
quantified by κ, which is proportional to the compression
modulus.20 In the implementation adopted here, the simulation
domain is subdivided into cubic volume elements, and local
densities (ϕ) are mapped onto the grid defined by those
elements using a zeroth-order particle-to-mesh (PM) scheme.19

Such an implementation allows for fast calculation of the
nonbonded energy and has been shown to provide results in
agreement with those of more elaborate interpolation
schemes.19,21

As shown in Figure 1(a), a guiding stripe of width W, which
is preferential to block A, is patterned at a pitch mL0. The
contribution of the pattern to the energy arising from a particle
of type α at position r is given by a short-range potential of the
form βHext(r,α) = ((Λ(α))/ds)exp(−(rz/2ds)2). Parameters
Λ(α) and ds denote the surface interaction strength for type α
and its range, respectively. The perpendicular distance between
the particle and the substrate is denoted by rz. The strength of a
guiding stripe for block A is given by Λ(A) = Λs. The remaining
pattern area is filled with a background material having an
affinity toward block A given by Λb. For simplicity, the surface
interaction parameters are assumed to be symmetric, i.e., Λs(A)
= −Λs(B) and Λb(A) = −Λb(B). Such an assumption has been
shown to give an overall description of DSA in good agreement
with experiments.7,9,17,18

The structure of the system is evolved by resorting to a
Monte Carlo algorithm with Metropolis sampling. Trial
displacements of molecules are accepted with probability Pacc
= min(1,exp(−βΔH)), where ΔH corresponds to the change in
energy induced by the displacement. One of the outputs of a
simulation is a three-dimensional scalar field of the order
parameter given by ψ(r) = ⟨(ϕA(r) − ϕB(r))/(ϕA(r) + ϕB(r))⟩,
which we use to define “target” structures.
The covariance matrix adaptation evolution strategy (CMA-

ES) belongs to a family of evolutionary computing algorithms
where principles from biological evolution are adopted to find a
set of variables that optimizes a chosen objective function.22 It
has been used in the context of materials research for
optimization of packing problems23 and for crystal structure
prediction.24 It is a stochastic and iterative method, where
populations of distinct system samples are evolved according to
the relevant dynamics, before assessment according to a fitness
function is used to determine whether individual samples are
terminated or allowed to multiply. At each iteration, a
correlated sample population of size λ is generated based on
information derived from previous iterations. The correlation
among the population is governed by the covariance matrix
(C), and the search window size is dictated by the step size (σ);
the λ “offspring” are then ranked according to the fitness
function, and the best μ offspring are chosen to be used in the
next iteration. A key feature of CMA-ES is its efficient protocol
for mutation and recombination of offspring. In a simple
random search, a new population is obtained by perturbing the
old population using Gaussian noise. In contrast, CMA-ES uses
the covariance matrix to perturb the system along specific
search directions. The covariance matrix is adapted at each
iteration step by “learning” from the “fitness” of the entire
population. This helps control the diversity of the population
and avoid premature convergence around a local optimum. For
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additional information about the CMA-ES, the reader is
referred to the literature.25

The target morphology considered here consists of defect-
free perpendicular lamella. Our goal is to identify an optimal
combination of the stripe width (W), guiding strength of the
stripe (Λs(A)), and strength of the background brush (Λb(A))
leading to the target morphology on a stripe-patterned
substrates. The objective function Ω that we choose to
minimize is the mean-square-difference of the spatial order
parameter between a given morphology (ψi(r)) and the target
morphology (ψtarget(r)), i.e., Ωi = (1/V)∫ Vdr

3((ψi(r) −
ψtarget(r))

2)1/2. The closer the value of Ωi is to zero, the closer
the morphology i is to the target. Let X = [W,Λs(A),Λb(A)]

T be
the column vector representing the combination of variables to
be optimized. The initial value of X is chosen at random. From
this initial value (the initial mean), a normally distributed
population of offsprings (Xi; i = 1, 2, ..., λ) of size λ = l is
generated. In this work, we use l = 31. We then carry out λ
independent Monte Carlo simulations, each with a correspond-
ing Xi as an input. The output of each molecular simulation
ψi(r) is then used to calculate the objective function Ωi. The λ
offsprings are rank-ordered according to Ωi, and a subset μ out
of these survives into the next generation. Here we use μ = 4.
The chosen μ offspring are then used to calculate a new mean
(X̅), covariance matrix (C), and step size (σ),25 and the process
is repeated until convergence.
As mentioned earlier, we consider a symmetric and linear

BAB triblock copolymer with √N̅ = 74, χN = 64, and κN = 45.
The chain is discretized into 64 beads, with 32 beads of type A
in the middle and 16 beads of type B connected to each side of
the A block. These parameters correspond to a P2VP−PS−
P2VP triblock copolymer with molecular weight 9K−18K−9K
g/mol and periodicity L0 = 16.5 nm, which has been shown to
give good results in 3X multiplication experiments. The
simulation domain considered here has dimensions 2mL0 ×
3L0 × L0; each simulation is run for a sufficiently large number
of Monte Carlo steps (200 000) to ensure that the block
copolymer reaches the equilibrium state corresponding to the
input Xi.
In the context of 3X density multiplication, we seek the

system parameters leading to defect-free perpendicular lamellae
when guiding stripes are 3L0 apart. That is, one chemical stripe
is used to guide three polymer lamellar domains. The target
morphology consists of well-formed, rectangular lamellae
perpendicular to the substrate. Note that, to assess finite-size
effects, multiple independent simulations are also run without
chemical patterns; defective lamella were obtained in all cases.
Thus, for the system size considered here, “patterning” is
required to direct the copolymers into defect-free perpendicular
lamella.
Evolutionary CMA-ES iterations are carried out by varying

the set of parameters [W,λs(A),λb(A)] until convergence.
Convergence is achieved when the step size (σ) of the CMA-ES
reached a small number close to zero. A lower value of σ
implies a smaller search window and indicates that the objective
function and the guiding pattern’s parameter fluctuate about
their respective mean value. Figure 2 shows the value of Ω for
the fittest offspring throughout the course of successive CMA-
ES iterations. After approximately 30 iterations, CMA-ES is able
to narrow down the region of interest and spends the rest of
the time fine-tuning the pattern parameters required for
optimal assembly. Several representative configurations corre-

sponding to fit offspring at various stages of the simulation are
also shown in the figure.
Our results indicate that for density multiplication factors

greater than 2 there are two regions of W/L0, where defect-free
perpendicular lamellae can form. The first, “trivial” regime
corresponds to the optimum width of the guiding stripe, i.e., W
= 0.5L0. The second, potentially more interesting regime,
corresponds toW = 1.5L0. In the former case, only one lamellar
domain sits on the guiding stripe, while in the latter, three
lamellar domains sit on the guiding stripe. Two of these are
preferential to the stripe (see Figure 1). The evolution of the
pattern variables for these two regimes is shown in Figure 3.
The optimal strength of the guiding stripe for a defect-free

assembly is different in each regime. For W = 0.5L0, a strong
preferential substrate (Λs(A) = 1.54) is predicted. In contrast,
only a moderately preferential substrate (Λs(A) = 0.34) is
predicted forW = 1.5L0. For 0.5L0 guiding, the chemical stripes
are narrow and are separated by 2.5L0; directing the defect-free
assembly over these narrow stripes requires a strong anchoring
of the preferential block to the guiding stripe. Note that the
probability of defect formation increases for weaker patterns.26

On the other hand, for 1.5L0 guiding, a moderate anchoring is
sufficient to drive the assembly, as stripes are wider in area and
closer to each other. Moreover, since one nonpreferential
domain also sits on the guiding stripe, having too strong an
anchoring for preferential blocks (and therefore a strong
repulsion for nonpreferential blocks) would result in the
formation of three-dimensional nonregular structures.9

The background strength for both cases is essentially neutral,
with only a slight preference for the B block. The preference of
the background for the B block is smaller for the W = 0.5L0
case than for the 1.5L0 case because the surface coverage ratio
of A blocks to B blocks on the background is higher in the
former case. Note that Liu et al.9 have observed this behavior in
experiments and provided a thermodynamic argument to
explain the neutrality of the background brush based on the
surface coverage ratio of the blocks.
The results for 4X density multiplication are similar to those

reported above for 3X in that the optimal widths of the guiding
stripe are the same, i.e., W = 0.5L0 or W = 1.5L0. However,
there are three important differences in the underlying chemical
pattern parameters for 3X and 4X as shown in Figure 4(a).

Figure 2. Value of the objective function corresponding to the best
offspring as a function of CMA-ES iterations for 3X density
multiplication. Adaptation of the search step size σ is shown in the
inset.
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First, the optimal interaction of the stripe is predicted to be
stronger for 4X (Λs(A) = 0.44 compared to Λs(A) = 0.34).
This is due to the fact that the stripes are located further away
in 4X density multiplication, which in turn requires stronger
anchoring to register the preferential domains to the pattern.
Second, the background in the 4X case is more neutral than in
the 3X case, where it exhibited a slight preference for the B
block. This can again be explained on the basis of the surface
coverage ratio of block A to B on the background, which in the
case of 4X with W = 1.5L0 was 2:3, compared to 1:2 for 3X
density multiplication. Third, the parameter fluctuations around
their optimal values in the later stages of evolutionary
computations are smaller in the 4X case than in the 3X case.
This shows that 4X multiplication is less permissive than 3X,
and a much narrower range of processing conditions leads to
optimal assembly. Operationally, the objective function land-
scape is shallower in 3X around the converged variables, and
the penalty for exploring parameter space around the minimum
is smaller, thereby increasing the variance of the parameters
sampled by the CMA-ES. It is worth pointing out that the same
calculations reported here for triblocks can be performed on
diblock copolymers. Our results (not shown) are comparable to
those for triblocks, except that fluctuations of Λ are more
pronounced in the initial stages of evolution. Here we reiterate
that a key reason for using triblocks in this work is that they are
more tolerant to domain pattern mismatch, as demonstrated by
Ji et al.,15 due to the fact that they can adopt either loop or
bridge conformations (and thus be more flexible). This is

particularly important for design of patterns with ultrasmall
feature sizes.
Poly(2-vinylpyridine-styrene-b-2-vinylpyridine) (P2VP−PS−

P2VP) of molecular weight 36.3 kg/mol was synthesized in our
laboratory. Self-assembly of these triblock molecules was
directed on chemical patterns according to the process flow
described in ref 27. Briefly, a cross-linkable polystyrene (PS)
mat of thickness 6−8 nm was deposited on a silicon wafer and
further patterned by electron beam lithography to form PS-
preferential lines. The width of the lines and their interaction
chemistry were designed according to the guidelines provided
by our hybrid evolutionary calculations for 3X and 4X
multiplication, namely, W = 1.5L0, and weak interactions
between the stripes and the PS block. The remaining area was
grafted by a random copolymer brush to create a background
layer. Subsequently, a thin film of triblock copolymers was spin-
coated on the chemical pattern, and the samples were allowed
to anneal in the presence of acetone, which is a neutral solvent
for both blocks. Under these conditions, the copolymers self-
assembled into perpendicular lamellae with characteristic
period L0 = 16.5 nm. Figure 5 shows the top down SEM
view of the underlying chemical patterns of stripe width W =
1.5L0 for 3X (a) and 4X (b) density multiplication and the
corresponding block copolymer assembly in (c) and (d),
respectively. It is clear that sub 10 nm dimensions are accessible
by using coarser guiding patterns that are easier to fabricate
than thinner lines. The processing conditions that our
evolutionary optimization scheme predicts lead to triblock
copolymer assembly that is nearly perfectly registered on
guiding stripes of width W = 1.5L0 for both 3X and 4X
multiplication. (The image shown in Figure 5 indicates that one
can achieve defect-free assembly over areas encompassing

Figure 3. (a) Evolution of the stripe width W on 3X density
multiplication for both 0.5L0 (circles) and 1.5L0 (triangles) regimes.
The final equilibrium morphology corresponding to each regime is
shown on top of each curve. (b) Corresponding evolution of Λs(A)
and Λb(A) for both stripe widths.

Figure 4. (a) Comparison of the interfacial energy parameters, Λs and
Λb, for 4X and 3X density multiplication at W = 1.5L0. (b) Objective
function minimization by a parallel Gaussian search and the CMA-ES.
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several microns. Whether defects arise over longer length scales
has not been addressed by our calculations or experiments, and
it is an issue that is intimately related to the kinetics of self-
assembly, as discussed in other work.14,28,29)
The most computationally demanding aspect of our

evolutionary calculations is the molecular simulation required
to find the equilibrium block copolymer morphology
corresponding to each set of the pattern’s parameters. The
particle to mesh approach19 adopted here takes approximately 1
h to find a local equilibrium, and the algorithm scales as nN
log(nN). For each evolutionary iteration, the molecular
simulations corresponding to each offspring can be run on
parallel processors. This approach of testing multiple
combinations of pattern variables simultaneously results in
faster convergence compared to a sequential random search.11

One possible improvement to a naive sequential search would
be a parallel Gaussian random search, where at each iteration λ
combinations of the variables are generated and μ best
individuals are chosen after ranking them according to their
corresponding objective function value. In contrast to CMA-ES,
however, these λ combinations would be uncorrelated, and the
search domain for each variable would be fixed. For
completeness, in Figure 4(b) we compare the convergence
behavior of CMA-ES with such a parallel Gaussian random
search. Clearly, the CMA-ES is able to minimize the objective
function in a much smaller number of iterations, showing that
CMA-ES provides a considerable improvement over a conven-
tional random search.
We have presented an efficient approach, based on a

computational evolutionary strategy, to identify the necessary
parameters or process variables required to direct the assembly
of block copolymers into desirable target structures. We
demonstrate this approach by optimizing the interaction
parameters that lead to defect-free assembly of lamellar
structures on guiding stripes. Monte Carlo simulations of
fully three-dimensional polymeric systems, with fluctuations,
were employed to predict the block copolymer morphology
corresponding to a particular combination of pattern variables.

The predictions of our simulations are consistent with recent
experiments, which suggest that 3X and 4X interpolation of
triblock copolymers is possible, provided the interaction of the
stripes is carefully tuned according to the specifications
identified in our calculations. Importantly, our combined
computational and experimental strategy demonstrates un-
equivocally that DSA of triblock copolymers can be used to
create defect-free sub-10 nm features, as required by litho-
graphic approaches for fabrication of the next generation of
semiconductor devices. While this work was focused on DSA of
lines, the evolutionary strategy presented here can be used
without need for modification for study of arbitrary patterns. A
key finding of this Letter is the demonstration that such a
strategy can in fact be used in conjunction with fully three-
dimensional simulations of fluctuating systems to identify
optimal conditions to achieve a target functionality.
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